Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mostafa M. Amini,^a Shabnam Hossein Abadi,^a Mahdi Mirzaee,^a Thomas Lügger,^b F. Ekkehardt Hahn^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, ^bAnorganisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, D-48149 Münster, Germany, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.034 wR factor = 0.080 Data-to-parameter ratio = 20.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

C 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

In centrosymmetric octamethyl- $1\kappa^2 C, 2\kappa^2 C, 3\kappa^2 C, 4\kappa^2 C$ -tetrakis- μ -benzoato- $1:2\kappa^2 O, O'; 2:3\kappa^2 O; 3:4\kappa^2 O, O'; 1:4\kappa^2 O$ -bis- μ_3 oxo- $1:2:3k^3 O; 1:3:4k^3 O$ -tetratin, [[(CH₃)₂SnO₂CC₆H₅]₂O]₂; the exocyclic Sn atom is five-coordinated and has a *trans*-C₃SnO₂ trigonal bipyramidal geometry [C-Sn-C = 139.4 (2)°] and the endocyclic Sn atom is six-coordinated and has a severely distorted *trans*-C₂SnO₄ octahedral geometry [C-Sn-C = 145.6 (2)°].

Comment

In the supramolecular self-assembled structures of dimeric 1,1,3,3-tetraorgano-1,3-dicarboxylatodistannoxanes, the monomeric $R_2(R'CO_2)Sn-O-Sn(O_2CR')R_2$ moieties are linked by two dative $Sn \leftarrow O$ interactions involving their distannoxanyl O atoms. The dative bond is unusually short in such organotin compounds, these being typically as short as the covalent Sn-O bond, so that the covalent and dative bonds are not readily distinguished (Ng *et al.*, 1991; Haiduc & Edelmann, 1999). The most common of the four types of such tetranuclear aggregates has two bridging and two monodentate carboxylate groups, and one Sn atom is five-coordinated, whereas the other is six-coordinated.

The benzoate derivative, bis(1,1,3,3-tetramethyl-1,3dibenzoatodistannoxane), (I), adopts this centrosymmetric configuration (Fig. 1). The five-coordinated Sn atom has a bent C_2 Sn skeleton [C-Sn-C = 139.4 (2) Å], as does the sixcoordinated Sn atom $[C-Sn-C = 145.6 (2)^{\circ}]$. The fivecoordinated Sn atom is bonded to a monodentate benzoate group, whose $-CO_2$ unit displays single and double C-Obonds. The singly bonded atom O1 acts as a bridging atom, forming a relatively short bond with the five-coordinated Sn atom [Sn1-O1 = 2.165 (3) Å] and a very long bond with the six-coordinated Sn atom [O1-Sn2ⁱ 2.800 (3) Å; symmetry code: (i) 1 - x, 1 - y, 1 - z]. The doubly bonded atom O2 is engaged in a weak $C-H_{Ar} \cdots O_{CO}$ interaction [C15 \cdots O2ⁱⁱ = 3.450 (6) Å and $C-H\cdots O^{ii} = 165^{\circ}$; symmetry code: (ii) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$, which links adjacent molecules into a layer structure (Fig. 2).

Received 16 September 2002 Accepted 4 November 2002 Online 15 November 2002

Figure 1

ORTEPII (Johnson, 1976) plot of the centrosymmetric 1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane dimer, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

ORTEPII (Johnson, 1976) plot of the supramolecular C-H···O interactions in bis(1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane). H atoms have been omitted.

A number of the distannoxanes have been isolated as the products either from the condensation of a diorganotin oxide with two molar equivalents of the carboxylic acid, or from the metathetical reaction of a diorganotin dihalide with a metal carboxylate (Tiekink, 1991a, 1994). The dicarboxylate that is initially formed is unstable with respect to hydrolysis to the distannoxane. An example is shown by dimethyltin diacetate, an air-sensitive compound (Lockhart et al., 1987) that can hydrolyze to the distannoxane (Lockhart et al., 1986). On the other hand, dimethyltin dibenzoate represents an exception, as it is air-stable; the monomeric compound adopts a skewtrapezoidal bipyramidal geometry $[C-Sn-C = 147.2 (7)^{\circ}]$ (Tiekink, 1991b).

Experimental

Dimethylphenyltin iodide was obtained by the cleavage of the tinphenyl bond of dimethyldiphenyltin by elemental iodine (Davison & Rakita, 1970; Amini et al., 1989). In an attempt to synthesize dimethylphenyltin benzoate, equimolar quantities of dimethylphenyltin iodide (0.35 g, 1 mmol) and silver benzoate (0.23 g, 1 mmol) were dissolved in ethanol to give a precipitate that was presumed to be silver iodide. The precipitate was removed and the solvent evaporated off to furnish a white material. Crystals (m.p. 514-515 K) were grown from a methanol-toluene solvent system. In the ¹H NMR spectrum in CDCl₃, the tin-methyl coupling constant was 90 Hz.

Crystal data

$[Sn_4O_2(CH_3)_8(C_7H_5O_2)_4]$	$D_x = 1.774 \text{ Mg m}^{-3}$
$M_r = 1111.47$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3680
a = 9.4001 (6) Å	reflections
b = 20.952 (1) Å	$\theta = 1.9-27.5^{\circ}$
c = 11.2920 (7) Å	$\mu = 2.42 \text{ mm}^{-1}$
$\beta = 110.671 \ (2)^{\circ}$	T = 293 (2) K
$V = 2080.8 (2) \text{ Å}^3$	Prism, colorless
Z = 2	$0.15\times0.05\times0.03$ mm

4785 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0227P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

 $R_{\rm int} = 0.041$ $\theta_{\rm max} = 27.5^{\circ}$

 $h=-12\rightarrow 12$

 $k = -27 \rightarrow 27$

 $l = -14 \rightarrow 14$

+ 0.958P]

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

3723 reflections with $I > 2\sigma(I)$ '

Data collection

Bruker CCD area-detector diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.713, \ T_{\max} = 0.931$ 20323 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.080$ S = 1.014785 reflections 230 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Sn1-C1	2.096 (5)	Sn2-C4	2.089 (5)
Sn1-C2	2.103 (5)	Sn2-O1 ⁱ	2.800 (3)
Sn1-O1	2.165 (3)	Sn2-O4	2.226 (3)
Sn1-O3	2.232 (3)	Sn2-O5	2.035 (2)
Sn1-O5	2.015 (2)	Sn2-O5 ⁱ	2.153 (2)
Sn2-C3	2.099 (5)		
C1-Sn1-C2	139.4 (2)	C3-Sn2-O5 ⁱ	96.3 (2)
C1-Sn1-O1	96.7 (2)	C4-Sn2-O1 ⁱ	78.3 (2)
C1-Sn1-O3	86.3 (2)	C4-Sn2-O4	85.8 (2)
C1-Sn1-O5	109.2 (2)	C4-Sn2-O5	107.4 (2)
C2-Sn1-O1	97.0 (2)	C4-Sn2-O5 ⁱ	96.6 (2)
C2-Sn1-O3	86.0 (2)	O1 ⁱ -Sn2-O4	125.5 (1)
C2-Sn1-O5	110.7 (2)	O1 ⁱ -Sn2-O5	141.3 (1)
O1-Sn1-O3	171.0 (1)	O1 ⁱ -Sn2-O5 ⁱ	64.7 (1)
O1-Sn1-O5	80.6 (1)	O4-Sn2-O5	93.2 (1)
O3-Sn1-O5	90.4 (1)	O4-Sn2-O5 ⁱ	169.8 (1)
C3-Sn2-C4	145.6 (2)	O5-Sn2-O5 ⁱ	76.6 (1)
C3-Sn2-O1i	78.8 (2)	Sn1-O5-Sn2	135.2 (1)
C3-Sn2-O4	87.0 (2)	$Sn1-O5-Sn2^{i}$	121.4 (1)
C3-Sn2-O5	106.6(2)	Sn2-O5-Sn2 ⁱ	103.4 (1)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

H atoms were positioned geometrically and were allowed to ride on their parent C atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ for the aromatic C atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl C atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the Vice-President's Office of Research Affairs of Shahid Beheshti University, Westfälische Wilhelms-Universität Münster and the University of Malaya (F0717/ 2002A) for supporting this work.

References

Amini, M. M., Ng, S. W., Fidelis, K. A., Heeg, M. J., Muchmore, C. R., van der Helm, D. & Zuckerman, J. J. (1989). J. Organomet. Chem. 365, 103–110.

- Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davison, A. & Rakita, P. E. (1970). J. Organomet. Chem. 23, 407-426.
- Haiduc, I. & Edelmann, F. T. (1999). Supramolecular Organometallic Chemistry, pp. 164–166. Germany: Wiley-VCH Verlag GmbH.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lockhart, T. P., Calabrese, J. C. & Davidson, F. (1987). Organometallics, 6, 2479–2483.
- Lockhart, T. P., Manders, W. F. & Holt, E. M. (1986). J. Am. Chem. Soc. 108, 6611–6616.
- Ng, S. W., Chen, W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 412, 39–45.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tiekink, E. R. T. (1991a). Appl. Organomet. Chem. 5, 1-23.
- Tiekink, E. R. T. (1991b). J. Organomet. Chem. 408, 323-327.
- Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.